DIGITAL LOGIC DESIGN

Course Code	19EC3401	Year	II	Semester	II
Course	Program	Branch	ECE	CE Course Type	
Category	Core			<i>v</i> I	•
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes

Upon successful completion of the course, the student will be able toCO1Compare the various features of Binary codes.CO2Simplify Boolean functions using K-map & implement them using Logic gates

CO3 Design and Realize various Combinational circuits for the given specifications

CO4 Analyze and Design Clocked Sequential circuits

CO5 Construct Logic gates using CMOS

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	3							1	2	1
CO5	3	3	2	2	3							1	2	1

Syllabus							
Unit No.	Contents	Mapped CO					
Ι	BinaryCodes: Signed Binary Numbers, Complements, Binary	CO1					
	Codes, Error detection and correction code, Binary Logic.						
	Boolean Algebra: Basic definitions, Axiomatic definition of						
	Boolean algebra, Basic theorems and properties of Boolean						
	algebra, Boolean functions, Canonical and standard forms, Digital						
	logic gates.						
II	Simplification of Boolean functions: The map method, Four-	CO2					
	variable map, Five-variable map, Tabulation Method, Product of						
	sums simplification, Don't-care conditions, NAND and NOR						
	implementation, Exclusive-or function						
III	Combinational Logic: Combinational circuits, Analysis	CO3					
	procedure, Design procedure, Binary Adder- Subtractor,						
	Decoders, Encoders, Multiplexers, De-Multiplexer						
	Memories: Random-access memory, Memory decoding, Read-						
	only memory.						
IV	Synchronous Sequential Logic: Sequential circuits, Latches,	CO4					
	Flip-Flops, Analysis of clocked sequential circuits, State						
	reduction and assignment, Design procedure						
V	Registers and Counters: Registers, Shift registers, Ripple	CO5					
	counters, Synchronous Counters, Ring counter. Digital						

Integrated	circuits:	Special	characteristics,	Complementary
MOS (CMC	OS), CMOS	transmis	sion gate circuits	.

Learning Resources

Text Books

1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007. **Reference Books**

1. ZviKohavi, Switching and Finite Automata Theory, 2/e, Tata McGraw-Hill Education, 2008.

- 2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.
- 3. Frederick J. Hill and Gerald R. Peterson, Introduction to Switching Theory and Logic Design, 3/e, John Willey and Sons, 1981.
- 4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit</u>/frame/index.html
